TCEC Webinar Guide: Data Analysis in Excel

Learning Objectives:

Perform basic Excel functions (format, filter, sort, hide, conditional formatting, etc.) Calculate descriptive statistics in Excel Recognize materials required before starting data analysis Classify which variables to prioritize Identify why/when/how to calculate confidence intervals for categorical data Compare confidence intervals and provide an interpretation Operate pivot tables

Excel Tips:

• Save! Save! Save!

Always save raw data, and don't touch it!

- \circ "Save As" another file so that the raw data are left untouched
- Label! Label! Label!
 - o Label variables, label sheets, label files, label tables, label titles, label everything!
- Document! Document! Document!
 - o Create a data analysis plan and code book if not already provided with the data
 - Record steps via macros or on a Word document so you can retrace your steps
 - o List file locations and define naming conventions if necessary
- Get organized it's more efficient!
 - Gather all materials data files, codebook, data analysis plan, shell tables, etc.
 - Do NOT do it by hand! Use the resources including TCEC for tips and options
 - Use shortcuts:
 - Ctrl + down/up/left/right arrow to go to the end of in that direction
 - Ctrl + Shift + down/up/left/right arrow to select all cells in that direction
 - Ctrl + A = select all
 - Ctrl + Z = undo last change
 - Ctrl + Y = redo last change
 - Shift + Space = select row
 - Ctrl + Spacebar = select column
 - Ctrl + Home = go to cell A1
- Ctrl + F = open Find/Replace window
- Tab to complete a formula
- =VLOOKUP is amaaaaaaziiiing!
- F2 to check formulas
- F4 in a formula = relative cell reference

Basic Excel Functions

Note: These steps do not change the data; they merely change the view of the data.

- 1. **Turn on filters** = allows for easy sorting and filtering
 - a. Select the row of variable names \rightarrow Home \rightarrow Sort & Filter (toward the left side) \rightarrow Filter
- 2. **Highlight variable labels** = make the names stand out somehow e.g. bold, change size or color of font or cell, and definitely freeze panes.
 - a. BONUS Use "Format as Table" feature under the Home ribbon
 - b. Freeze variable labels = keeps the variables in view even when scrolling through rows
 - i. Select the cell to the RIGHT and BELOW the column and row you want to freeze
 → View → Freeze Panes → Freeze Panes
- 3. Resize and/or wrap cells = allows all of a cell's contents to be seen
 - a. Resize: Select row or column to be resized (can select multiple rows or columns at once)
 → move cursor over the line to the right of the column or below the row → click and hold → drag to left to make smaller or right to make bigger
 AND/OR
 - b. Wrap: Select cell(s) to be resized \rightarrow Home \rightarrow Wrap test
 - c. BONUS Shortcut to auto size: Ctrl + A \rightarrow Double click line between rows and/or columns
- 4. Hide variables = show less on the screen at once e.g. modules not chosen
 - a. Select columns to be hidden \rightarrow right click in selected area \rightarrow Hide
- 5. Unhide variables = show hidden columns
 - a. Select columns before and after hidden columns or select all columns → right click in selected area → Unhide
- 6. Change view = zoom in or out of the screen
 - a. Select the or + sign in the bottom right of the screen
- 7. Change number format = tell Excel how to interpret numbers (type of data)
 - a. Select cells to reformat \rightarrow Home \rightarrow under the "Number" section of the ribbon, there are different options: \$ sign, % sign, Increase or Decrease decimal, etc.

Basic Excel Functions Continued:

Note: These steps DO change the data

- 8. Check for duplicates = endeavor to start with the most accurate and valid data
 - a. Select column with unique ID \rightarrow Home \rightarrow Conditional Formatting \rightarrow Highlight Cell Rules \rightarrow Duplicate Values \rightarrow Sort or Filter by cell color to easily locate and fix
 - b. Can also sort/filter a few variables. Filter by zip, sort by city, etc.
- 9. **Copy AND label sheets** = for segmenting data, exploring data safely, other uses
 - Right click on a sheet tab (bottom left of the screen) → Move or Copy → Select the sheet to copy → Select the box next to Create a cope → OK
 AND THEN
 - b. Right click the sheet that was just created \rightarrow Rename \rightarrow Give it a name
 - c. To reorder sheets, drag and drop to the desired location

PART 2:

Calculate Descriptive Statistics

Descriptive statistics for nominal data

Label	Formula
sample size aka "n"	=COUNTA (S2:S62)
missing	=COUNTBLANK (S2:S62)
sum (frequency for binary variables)	=SUM(S2:S62)
count (frequency for other nominal variables	=COUNTIF(S2:S62
percentage	=frequency/n

Descriptive statistics for ratio data:

Label	Formula	
min	=MIN (CK2:62)	
max	=MAX (CK2:62)	
range	=max cell – min cell	
mean	=AVERAGE(CK2:62)	
median	=MEDIAN(CK2:62)	
mode	=MODE(CK2:62)	

Prioritize Variables:

- 1. First, **Find** the variable(s) of interest \rightarrow Ctrl + F
- 2. Then, **Hide** other variables \rightarrow Select columns to be hidden \rightarrow right click in selected area \rightarrow Hide
- 3. Calculate descriptive statistics for those variables
 - a. Sample size aka "n" =COUNTA(E2:E62)
 - b. **Missing data** =COUNTBLANK(E2:E62)
 - c. For binary variables (i.e. 0 or 1 values) can use **Sum** =SUM(E2:E62)
 - d. **Count** aka **frequency** =COUNTIF(E2:E62, 1)
 - e. **Percentage** = frequency/n

Calculate Confidence Intervals in Excel:

Label	Formula	Formula
n [same as the n from Descriptive stats]	=E64	Sample size
count yes	=COUNTIF(E2:E61,1)	number of 1s in data
count no	=COUNTIF(E2:E61,".")	Number of decimal
		points
p	=E92/E91	Number of 1s over
		sample
1-p	=E93/E91	Number of decimal
		points over sample
C.L. [confidence level]	0.95 [could also be .99]	0.95 [could also be .99]
alpha [this is my margin of error, set at (1-C.I),	0.05 [could also be .01]	0.05 [could also be .01]
in this case 195=.05]		
alpha/2 [the total of (1-C.I)/2 in this case	=E97/2	The alpha over 2
.05/2=.025]		
z score	1.96 [could also be	1.96 [could also be
	2.576]	2.576]
standard error [statistical formula: (P*(1-	= SQRT((E94*E95)/(E91))	Square root of (Number
P))/(n=)]		of 1s over sample) times

		(Number of decimal
		points over sample) over
		the sample
margin of error [statistical formula: (Standard	=E100*E99	(Standard error) times Z
Error)*(Z score)]		score
lower limit [proportion - margin of error]	=E94-E101	(margin of error) minus
		(Number of 1s over
		sample)
upper limit [proportion + margin of error]	=E101+E94	(margin of error) Plus
		(Number of 1s over
		sample)

PivotTables in Excel:

First, there are some requirements that Excel demands in order to create a pivot table:

- Every column needs a variable name
- Cannot have a space between columns
- Cannot have a space between rows
- If the data change, you need to refresh the pivot table
- Clicking off of the pivot table makes the window disappear; click it to make it appear

1. Insert a Pivot Table

- a. Select a cell in the dataset \rightarrow Insert \rightarrow Pivot Table \rightarrow OK = pivot table in a new sheet OR
- b. Select a cell in the dataset \rightarrow Insert \rightarrow Pivot Table \rightarrow Select Existing Worksheet \rightarrow Select where you want the pivot table to go \rightarrow OK = pivot table in a specific location

2. Rename Sheet

a. Right click sheet tab to rename \rightarrow Rename \rightarrow Enter a proper label for this sheet

3. Drag/Drop Variables

- a. Drag "StoreCity" to Row Labels
- b. Drag C7_1, C7_2, C8_1, C8_2 to Values
- c. For all variables in Values \rightarrow Select arrow \rightarrow Value Field Settings \rightarrow Sum \rightarrow OK
 - i. Since we're working with binary variables, we can/need to use the sum function
- d. Rename labels (store type, variable names, etc.)

4. Calculate Percentages

- a. Select all cells in the PivotTable \rightarrow Copy \rightarrow Paste as Values in 2 locations
- b. Label table
- c. Enter equation and copy into all cells

5. Compare city of Apple to the rest

- a. Select all cities except for Apple \rightarrow right click in the selected area \rightarrow Group
- b. Rename group to "County" \rightarrow Select cell \rightarrow type County
- c. Roll up groups \rightarrow Select the minus sign to collapse group
- d. Repeat Step 4. Calculate Percentages

6. Compare Peaches to the rest

- a. Select group \rightarrow right click in selected area \rightarrow Ungroup
- b. Select all cities except for Peaches \rightarrow right click in the selected area \rightarrow Group
- c. Rename group to "County" \rightarrow Select cell \rightarrow type County
- d. Roll up groups \rightarrow Select the minus sign to collapse group
- e. Repeat Step 4. Calculate Percentages
- 7. BONUS:
 - a. Double click in a PivotTable to create a segment of the data in a separate sheet

Resources

- Anne Emery workshops, blog, and other evaluation resources: <u>http://annkemery.com/workshops/</u>
- Mike "excelisfun" Girvin's YouTube video tutorials: https://www.youtube.com/user/ExcellsFun
- Mr. Nystrom, YouTube videos on Stats <u>https://www.youtube.com/user/MrNystrom</u>
- American Evaluation Association courses: <u>http://comm.eval.org/coffee_break_webinars/estudy</u>
- Tobacco Control Evaluation Center: <u>www.tobaccoeval.ucdavis.edu</u> or 530-752-9951